THE COEXTRACTION OF WATER INTO NITROBENZENE WITH ALKALI METAL SALTS OF HEXANITRODIPHENYLAMINE IN THE PRESENCE OF DIBENZO-18-CROWN-6

Tadashi IWACHIDO, Masaho KIMURA, and Kyoji TÔEI*

College of Liberal Arts, Okayama University, Tsushima, Okayama 700

* Department of Chemistry, Faculty of Science, Okayama University

The hydration numbers of alkali metal cations and their complex cations with dibenzo-18-crown-6 in water-saturated nitrobenzene were determined. The complexation causes a clear decrease in hydration number, indicating that the water molecules hydrated have partly been replaced by the six oxygen atoms of dibenzo-18-crown-6.

In a previous paper¹⁾ it has been demonstrated that when ion-pairs of alkali metal cations with some bulky organic anions are extracted into nitrobenzene, the water molecules strongly hydrated to the cations are transferred to the organic phase. It is known that macrocyclic polyethers complex cations and in the resulting complexes the metal cations are situated in the center of the inwardly oriented oxygen atoms^{2,3)} This 'metal in the hole' picture suggests that the hydration number of the cations, that is, the quantity of the water coextracted into nitrobenzene is much affected by the complexation. The present paper deals with the quantitative effect of dibenzo-18-crown-6 (L) on the coextraction of water.

Nitrobenzene solutions of alkali metal and ammonium 2,2',4,4',6,6'-hexanitro-diphenylaminates (MA) (0 - 0.02 M), L (0 - 0.03 M), and MA plus L (mole ratio of L to MA, 0 - 3) were shaken separately with an equal volume of an aqueous solution for an hour at $25 \pm 0.05^{\circ}$ C in a thermostated water bath, all the aqueous solutions being adjusted at pH = 11.7 and ionic strength I = 0.1 with either the corresponding alkali metal chloride and hydroxide or the corresponding sulfate and carbonate. The nitrobenzene solution of L was shaken with an aqueous solution prepared with potassium salts. The water content in the organic phase was determined by the Karl-Fischer method (Mitsubishi Kasei Co., Ltd., MCI Model CA - 1). The total aminate and L concentrations in the aqueous phase were determined spectrophotometrically. Conductance measurements were carried out at $25 \pm 0.005^{\circ}$ C by the use of a universal bridge (Ando Electric Co., Ltd., LCR - 10) equipped with platinized platinum electrodes.

Figure 1 shows that the solubility of water in nitrobenzene, S (0.178 M), increases slightly when potassium aminate (KA) or L, or both, are present. The hydrolysis product of the aminate ion (A $^-$) was not detected. The concentrations

of the complex ion-pairs of L with alkali metal chlorides or sulfates in the organic phase were found to be negligibly small compared with the concentrations, C, of the Thus, the number of molecules of solutes. water associated with KA, L, and the complex between them can be evaluated to be 1.3, 0.7, and 0.1 respectively from the slope of the linear plot as shown in Fig. 1. data⁵⁾ reveal that the observed changes in I and pH during the extraction have no significant effect on S. From the data on the solubility of water in nitrobenzene) it can be seen that the observed variation of the temperature causes an error of less than about 0.1 molecule of water.

In Fig. 2 the solubility increment divided by the total concentrations of the aminates in the organic phase, $\Delta S/C^A$, is plotted as a function of the ratio of the total concentrations of L to the aminates, The decreasing portion of the curve indicates that the quantity of the complex ion-pairs which carry less water than MA increases with the concentration of L. position of a minimum point in Fig. 2 shows that all the resulting complex ion-pairs are of a l : l stoichiometry. The slope of the linearly increasing portion of the curve is identical with that of L in Fig. 1; this finding suggests that the excess of L does no longer participate in the formation of such a complex as ML₂A. It may be noted that caesium shows a slightly different behavior when L is added in excess.

The l : l stoichiometry of the complex ion-pairs (MLA) was also confirmed by means of conductometric titrations (Fig. 3). From the curvature at the equivalence point in Fig. 3 it can be seen that three times as much L as M^{+} is sufficient to complete the complexation: M^{+} + L = ML^{+} , and hence the conductance measurements for obtaining the dissociation constant, K_{d} , of MLA were carried out under

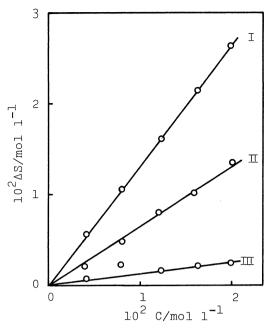


Fig. 1. Coextraction of water. I: KA, Π : L, Π : KA + equiv. L

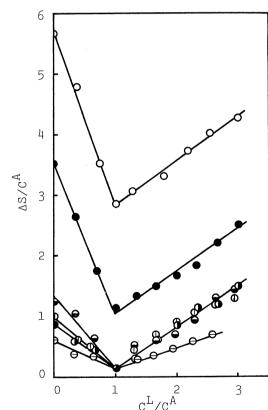


Fig. 2. Effect of L on the coextraction of water.

O: LiA, ●: NaA, ●: KA, •: RbA

 Θ : CsA, Φ : NH_{J1}A

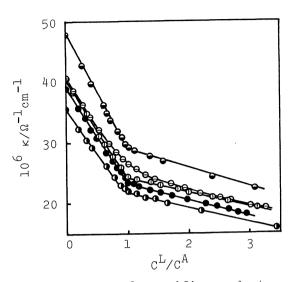


Fig. 3. Plot of specific conductance, κ , vs. c^L/c^A . For indications, see Fig. 2.

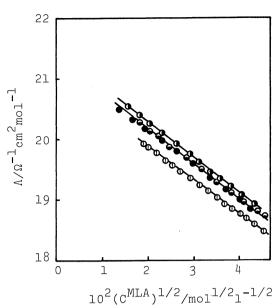


Fig. 4. Equivalent conductivity of MLA.
For indications, see Fig. 2.

the conditions as $C^L/C^A=3$. A plot of equivalent conductivity, Λ , vs. the square root of the concentration of MLA gives a straight line in the concentration range about 4×10^{-4} to 20×10^{-4} M, as is shown in Fig. 4. The values of K_d calculated by the method of Shedlovsky⁷⁾ are shown in Table 1. The words 'dry' and 'wet' in Table 1 refer to nitrobenzene solutions containing water at concentrations of less than 300 and about 2000 µg/ml respectively. A difference in the ionic diameter of M^+ is scarcely reflected in the magnitude of the limiting equivalent conductivities, Λ° , of MLA in both the dry and wet solutions, indicating that the complex cations to be tested are almost equal in size, as can be expected from the above-mentioned structure of ML $^+$. The limiting equivalent conductivity of Λ^- , $\lambda^\circ(\Lambda^-)$, at 25°C in nitrobenzene can be computed as λ^- = $\Lambda^\circ - \lambda^\circ_+$ by using the data for Λ° for salts and λ^+ for the constituent cations. Two pairs

Table 1. Dependence of the Hydration of MLA on Λ° and K_{d}

MLA	$\Lambda^{\circ}/\Omega^{-1}$ cm 2 mol $^{-1}$		K _d /mol 1 ⁻¹		waters per		h ^{a)}
	dry	wet	dry	wet	MA	MLA	
Li ⁺					5.6	2.9	4.25
Na ⁺	21.4	21.9	10	14	3.5	1.2	2.9
K ⁺	21.4	21.7	7	8	1.3	0.1	1.2
Rb ⁺	21.5	21.8	8	7	0.9	0.1	0.5
Cs ⁺					0.6	0.1	0.1
NH ₄	21.1	21.5	5	11	1.1	0.1	1.05

a) The hydration number of M in aq. soln., Ref. 10.

of the data are available: $\Lambda^{\circ}(KA) = 29.7^{8}$, $\lambda^{\circ}(K^{+}) = 17.8^{9}$ and $\Lambda^{\circ}(NH_{\downarrow}A) = 30.1$, $\lambda^{\circ}(NH_{\downarrow}^{+}) = 18.4^{9}$. The $\lambda^{\circ}(A^{-})$ value thus obtained is on the average 11.8. The values of $\lambda^{\circ}(ML^{+})$ can then be calculated to be 9.3 - 9.7 from the corresponding Λ° values listed in Table 1. The fact that the values of $\lambda^{\circ}(ML^{+})$ are much smaller than those of $\lambda^{\circ}(M^{+})$ shows that ML^{+} is much bulkier than M^{+} in nitrobenzene.

The $\rm K_d$ values of MA and MLA in Table 1 shows that they are almost fully dissociated in the organic phase regardless of the presence or obsence of water. Therefore, if A is assumed to be not hydrated, the number of water molecules associated with MA or MLA can be identical with the hydration number of M or ML the existence of hydrated M in nitrobenzene has been confirmed by the shift of PMR spectra. Cation hydration can also be seen from the fact that the dissociation of MA in nitrobenzene is greatly affected by the presence of water (e.g., $\rm K_d(KA) = 32.65^8)$ in the dry solution; $\rm K_d(KA) = 10.32^8)$ in the wet solution), while as shown in Table 1 those for MLA are not. It is noticeable that the hydration numbers of M in the organic (the 6th column) and aqueous phases (the last column in Table 1) are similar in magnitude.

As can be seen from the structure of L, the formation of ML^+ does not require stripping of entire hydration shell of M^+ . Hence, water molecules attached to M^+ in the direction perpendicular to the plane of the ring of L may be left unstripped on complexation. It can be expected that the effect of the complexation on the change in hydration number is much obvious for highly hydrated cations such as lithium or sodium cations.

References

- 1) M. Kawasaki, K. Tôei, and T. Iwachido, Chem. Lett., 1972, 417.
- 2) C.J. Pedersen, J. Amer. Chem. Soc., 89, 7017(1967).
- 3) D. Bright and M.R. Truter, Nature, 225, 176(1970); J. Chem. Soc., B 1970, 1544.
- 4) T. Iwachido, A. Sadakane, and K. Tôei, Bull. Chem. Soc., Jpn., to be submitted.
- 5) D.R. Gere and C.E. Meloan, Separ. Sci., 3, 127(1968).
- H. Stephen and T. Stephen, "Solubilities of Inorganic and Organic Compounds", Vol. 1, Part 1, Pergamon Press, Oxford (1963), p. 430.
- 7) T. Shedlovsky, J. Franklin Inst., 225, 739(1938).
- 8) T. Iwachido, Bull. Chem. Soc., Jpn., 45, 1746(1972).
- 9) C.R. Witschonke and C.A. Kraus, J. Amer. Chem. Soc., 69, 2472(1947).
- 10) C.B. Monk, "Electrolytic Dissociation", Academic Press, London (1961), p. 271.

(Received August 16, 1976)